Janet Vorobyeva

janet.vorobyeva@gmail.com · 347-603-3315

EDUCATION

UC San Diego	Fall 2023 – Present
PhD in Computer Science	
Focus: Computer Architecture / Systems	
Stony Brook University	2015 - 2020
MS in Computer Science Science and Mathematica Minor in Electrical	GPA: 3.93 Engineering GPA: 3.70
 BS (Honors) in Computer Science and Mathematics, Minor in Electrical 	Engineering GPA. 3.70
WORK EXPERIENCE	
Graduate Student Researcher - UC San Diego	Fall 2023 – Present
 Research in CPU Architecture: Speculative Execution / Branch Predicto Research in Sustainable Computing and Low-Power Embedded Computing 	
Software Developer - Grist Labs	Summer 2023
Frontend developer for an in-browser spreadsheet application	
 Untangled a long-standing constraint allowing bidirectional linking/upd 	ating of data views
Computer Science Teacher – Stuyvesant High School	Spring 2022
Taught 3 classes daily of introductory Python, and 2 of Java with Proce	, ,
Cybersecurity Researcher – Sandia National Labs	2020 - 2022
 Integrated a virtual-memory system into the "SST" CPU simulator (sst-s Duit tabling using using using a stimized data structures to regidu index bish 	
 Built tooling using write-optimized data structures to rapidly index high yielding ~100x improvement in query times (see Vorobyeva et. al, 2022) 	
 Theory work on external-memory / write-optimized / data-oblivious dat 	
 (Worked first year as a graduate student researcher, second year as ful 	
System Administrator Student Assistant – Stony Brook University	2016 – 2019
 Maintained the <u>Seawulf HPC cluster</u>, consisting of >150 centOS Machine Debugged HPC cluster software installations, network configurations, h 	
Software Developer Intern – Grist Labs	2017 - 2018
Implemented a dynamic scroll module for displaying large spreadsheet	ts in a browser
 Profiled and optimized backend performance (Node.js/Python/SQL) 	
PUBLICATIONS	
• Vorobyeva J., Delayo D.R., Bender M.A., Farach-Colton M., Pandey P., Ph	
Thomas E.D., Kroeger T.M. (2022) Using Advanced Data Structures to	Enable Responsive
Security Monitoring. Cluster Computing Bender M A Bhattachariee A Conway A Farach-Colton M Johnson	D. Kannan C

 Bender, M.A., Bhattacharjee, A., Conway, A., Farach-Colton, M., Johnson, R., Kannan, S., Kuszmaul, W., Mukherjee, N., Porter, D.E., Tagliavini, G., Vorobyeva, J., & West, E. (2021). Paging and the Address-Translation Problem. Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures

TECHNICAL SKILLS

Fluent in C, Python, JavaScript/Typescript Experienced with Git, and Linux system administration Proficient with LaTeX, NumPy/pandas/Matplotlib, C++ Some experience with HPC, Embedded systems, Rust, CUDA, Verilog, Perl

NOTABLE COURSEWORK

Embedded Networking: Worked with bluetooth (BLE), 802.15.4 (Thread), WiFi, and LoRa networking on a Nordic nRF52840 embedded platform

Computer Architecture: Built a fully-forwarded and pipelined RISC-V CPU in Verilog with caches, virtual memory, and trap-handling

Distributed Systems: Implemented multi-threaded Raft consensus algorithm; built a sharded fault-tolerant key-value store on top of it

Operating Systems: Modified Linux kernel scheduler; added features to /proc

Computational Geometry: Studied algorithms for convex hulls, triangulations, etc; spatial data structures for point location, ranges. Implemented interactive voronoi-graph visualization (see Projects)

NOTABLE PROJECTS

CP/M Low Power Sensor: An energy-harvesting sensor node able to run on 150uW of input power. I designed and assembled a custom PCB, and integrated a low-power microcontroller (Apollo3), an energy-harvesting IC, and a LoRa radio. (course project) https://github.com/jvorob/cpm-firmware

SUBLEQ Assembler / FORTH: A personal project to bootstrap software from scratch for a home-brewed CPU architecture; starting with raw machine code, to writing an assembler, to a high-level language (FORTH) with disassembler, debugger, interactive REPL, stack introspection, etc. <u>https://github.com/jvorob/subleq-bootstrap</u>

Interactive Voronoi Tessellation: Implementation of a doubly-connected-edge-list data structure, used to build an interactive voronoi diagram; written in Typescript. (course project) https://jvorob.github.io/projects/voronoi/

Prolog Interpreter: Simple Prolog interpreter, written in Python https://github.com/jvorob/jpl

FORSH: FORTH interpreter and virtual terminal written for a 6502 CPU emulator <u>https://github.com/jvorob/6502js</u>

Tron Cellular Automaton: Implementation of the <u>tron automaton</u> <u>jvorob.github.io/projects/tron</u>