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Abstract
Write-optimized data structures (WODS), offer the potential to keep up with cyberstream event rates and give sub-second

query response for key items like IP addresses. These data structures organize logs as the events are observed. To work in a

real-world environment and not fill up the disk, WODS must efficiently expire older events. As the basis for our research

into organizing security monitoring data, we implemented a tool, called Diventi, to index IP addresses in connection logs

using RocksDB (a write-optimized LSM tree). We extended Diventi to automatically expire data as part of the data

structures’ normal operations. We guarantee that Diventi always tracks the N most recent events and tracks no more than

N þ k events for a parameter k\N, while ensuring the index is opportunistically pruned. To test Diventi at scale in a

controlled environment, we used anonymized traces of IP communications collected at SuperComputing 2019. We syn-

thetically extended the 2.4 billion connection events to 100 billion events. We tested Diventi vs. Elasticsearch, a common

log indexing tool. In our test environment, Elasticsearch saw an ingestion rate of at best 37,000 events/s while Diventi

sustained ingestion rates greater than 171,000 events/s. Our query response times were as much as 100 times faster,

typically answering queries in under 80 ms. Furthermore, we saw no noticeable degradation in Diventi from expiration. We

have deployed Diventi for many months where it has performed well and supported new security analysis capabilities.
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1 Introduction

Recent efforts in cybersecurity seek to build real-time

analytic tools to respond to threats as they occur. Even

basic behavioral analytics, e.g., determining whether the

originating IP in an secure shell (SSH) connection has

spoken with 5 other hosts (reasonable) or 500 (suspicious),

can be a powerful capability, as long as these analytics can

work in real-time. If we can make these kinds of deter-

minations as events occur, or soon after, we can build

security systems that respond automatically to threats, for

example, by recording all packet data for suspicious

activity.

For behavioral analytics to accurately reflect observed

activity, an analytic must consider a long window of sensor

data (e.g., months to years). In cybersecurity, sensor data is

often summarized network-traffic in the form of Zeek [17]

connection logs or netflow/IPFix logs from a router [8, 14],

and the volumes of data collected are so high that querying

months of data can be time consuming. To respond to

threats, we must be able to execute these queries quickly,

ideally on sub-second timescales.

Security analysts often organize sensor logs by inserting

them into a general-purpose log-indexing tool like Elas-

ticsearch or Splunk, which answer queries faster than

simply scanning the logs. To keep up with line-rate event

streams, these general-purpose tools typically require

massive amounts of parallelism (i.e., clustered deploy-

ments). In spite of these extensive resources, these tools

often answer queries in minutes to hours, practically lim-

iting the questions that are asked and inhibiting timely

responses. Developers of analytics often use a custom-built

in-RAM index to enable near real-time queries, but these

are limited to the size of RAM. They can store only a brief

window of recent events, and often quickly lose accuracy

as the data grows larger than RAM [3].

In this paper we show how to achieve both sub-second

query times and ingestion at line rate for months to years of

network events by using WODS to organize data as it

arrives. We further extend our WODS to prune older data,

enabling sustained operations on a fixed-sized disk, while

still keeping up with line rates. Our basis for this work is an

open-source tool we created, called Diventi. Diventi uses a

write-optimized key-value store called RocksDB [11, 13]

to index the IP addresses of events in network connection

logs. RocksDB provides an open source implementation of

a log-structured merge tree (LSM tree), a common and well

understood WODS.

By selecting IP addresses as an important class of

queries that need to be answered quickly, we can create

near real-time behavior analytics like the SSH example

above. Diventi doesn’t answer generic queries, but it does

answer specific queries like this in a way that could be used

to respond to threats. For example, in our SSH analytic

mentioned above, an analytic that works in milliseconds

could route the traffic for the IP with 500 SSH connections

through a slower path that records all traffic for further

analysis.

Furthermore, our approach compliments general pur-

pose search tools: Diventi provides responders with up to

the minute behavioral summaries and an immediate view

of a situation as events unfold. Tools like Diventi can

provide data enrichment, which can significantly improve

real-time situation awareness for incident responders. For

example, Diventi can provide a summary of connection

behavior when a specific IP is moused over in a security

information and event manager (SIEM). At the same time,

the general purpose search tools are necessary for more

heavyweight follow-up queries, which can be more effec-

tively targeted with the situational awareness that Diventi

provides.

While this work focuses on IP addresses, the same

approach could provide similar capabilities for other key

items, such as DNS names or e-mail addresses. Our point

in this work is to show that by thinking about how we

organize our security-monitoring data, significant gains in

real-time behavioral analytics can be achieved. Tools like

this are necessary if we are to move from analytics that

simply alert to systems that take actions to respond based

on long-term behaviors covering months and years worth

of data.

Our initial work using WODS to index IP addresses

brought to light one key limitation of the current tools: the

need to efficiently expire old information as new data is

ingested. While typical WODS commonly have a deletion

function, they are costly. In a steady state every insert

would require a deletion to ensure the database didn’t grow

too big and fill up the disk. Yet if a typical deletion is done

with each insert we would quickly grind our system to a

crawl. This is because WODS typically optimize insertions

at the cost of slowing down lookups by 10–100 times, and

each deletion could require a lookup of the item to enable

deletion. Alternatively, many general purpose systems like

Elasticsearch use multiple rolling indices, discarding old

data by dropping the oldest index. Unfortunately, as we

show later, this approach causes query performance to

scale poorly with size.

To enable expiration, we implemented a time-stamp

histogram that allows us to loosely track which time-stamp

corresponded to the Nth event. We then created a custom

compaction filter within RocksDB to opportunistically

purge events older than a given time-stamp. This expiration

algorithm guarantees the index always has the N most

recent events and takes advantage of the LSM tree’s

compaction process to opportunistically expire data. The
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result of this work is an LSM tree that maintains a rolling

window that indexes the N most recent events with some

excess k. Our analysis in Sect. 4 shows that we do not

expect ingestion rates and query response times to be

negatively impacted.

1.1 Real-world and benchmarking

We performed initial tests of Diventi at SuperComputing

(SC) as part of the Network Research Exhibition (NRE)

track. We indexed security events at rates well above

170,000 events/s and responded to queries in milliseconds,

without ever approaching I/O or CPU saturation.

While SC was helpful for prototyping and experimen-

tation, to benchmark our systems we needed a consistent

and reproducible workload for standardized tests. We

collected and anonymized traces of 2.4 billion connection

records seen at SC 2019. While a dataset of 2.4 billion

connections is rare and unique, it was not large enough for

the long-term workloads we needed to test our system. To

address this, we extended the SC traces to 100 billion

events by looping them and adjusting the time stamp on

each loop. While this synthetic workload has limitations in

how it represents real-world behavior (see Sect. 5.2), all of

the synthetic workloads we examined had limitations and

this approach seemed to provide the best balance of realism

and efficiency.

Benchmarking Diventi with this workload, we found

that it performed more than fast enough to support near

real-time queries. Typical queries returned in under 80 ms,

and even large queries returning over 1 million distinct

events completed in 8 s. For comparison, running the same

tests on Elasticsearch took almost 100 times longer to

answer the same queries. Diventi also performed well on

ingestion rates, managing 170,000 insertions/s at a data-

base size of 25 billion events, while still managing 115,000

insertions/s when we let the data grow to 100 billion

events.

Beyond SC and synthetic workloads, our system has

also seen long-term near real-world usage on live networks

indexing over 430 billion events and expiring many

months’ worth of data. From the RESTful interface, ana-

lysts were able to easily extend the tool with a basic script

that queries months of traffic in seconds. They use this tool

to create a near real-time behavioral summary of any given

IP. Our code, the anonymized traces from SC, and asso-

ciated tools have been made publicly available with this

publication.

1.2 Contributions

This paper presents three key contributions:

– We present a new approach to organizing security-

monitoring data by focusing on near real-time response

for key events. We build on recent advances in WODS

to maintain a single, strong index able to answer queries

across months of data, with results returned in mil-

liseconds. This enables near real-time behavioral ana-

lytics for key events, a key capability gap we

recognized from our experience in security monitoring.

– We present an efficient method to handle expiration of

old data that ensures we always keep the N most recent

events indexed and never keep more than N þ k events,

for user parameter N and parameter k\N that depends

on other parameters. This gives a lower bound on data

available for queries and an upper bound on space

usage. Our analysis showed that we could efficiently

integrate culling of older data as part of RocksDB’s

normal data-structural operations with minimal perfor-

mance overhead, even when data arrive out of order.

– We collected a uniquely large dataset at SC 2019

consisting of anonymized traces of 2.4 billion network

connections. By extending these traces synthetically,

we created a workload of 100 billion events that

enabled us to model some realistic long-term behaviors

for our approach and expiration methods. We are

publishing this anonymized dataset alongside the

release of this paper.

This paper is organized as follows. Section 2 provides

some initial background on write-optimized data structures,

and discusses related work. Section 3 presents the design

of our IP indexing tool. Section 4 provides some analysis

of the expected performance for our expiration algorithm.

Section 5 provides details of our testing methodology and

our synthetic trace generation. Section 6 presents the

results from our laboratory tests. We provide future work

and concluding remarks in Sect. 7.

2 Background

In this section we provide some background on write-op-

timized data structures and security monitoring.

2.1 Security monitoring

Computer security monitoring has focused on collecting

and analyzing network events for years. Tools like Zeek

[17] and DHS’s Einstein program [10] have made great

strides in logging high-speed, real-time network interac-

tions. For each conversation between two IP addresses,

these flow-logging tools record metadata such as the

timestamp, ports used, the number of packets and bytes

exchanged in each direction, and basic connection state
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flags. This metadata provides an effective way to summa-

rize network-level events.

Flow event logs are frequently fed into tools like Splunk

or Elasticsearch to provide a common point of entry for

incident responders to query. The scale of this data often

requires large clustered deployments of indexers and

search heads to both keep up with the rate of incoming data

and enable queries suitable for human workflows, on the

order of seconds for short timeframes. When analysts need

to understand behaviors for longer terms, months or more,

such queries can take minutes or hours, depending on their

complexity, forcing analysts to switch contexts frequently,

reducing their analytical effectiveness. High-latency quer-

ies also inhibit automated workflows, such as for real-time

response and data enrichment.

To address query delay, some systems either rely on

RAM-based data structures or probabilistic structures like

Bloom filters [4], but these tools have limited ability to

track events and accurately represent behaviors. Berry and

Porter [3] showed that pattern-detection efficacy of a state

of the art RAM-based structure quickly declines as the data

grows beyond the size of the structure. Specifically, when

the data set tracked was the size of the structure, the

capability detected 66% of reportable events. When the

data set was twice and four times the size of the structure,

the detection rate dropped to 23% and 0.053%, respec-

tively. These detection errors are false negatives,

unknowable to analysts.

In short, we believe there is a need for efficient low-

maintenance methods to index security-monitoring events

at scales on par with the amount of data currently being

collected, and we believe write-optimized data structures

offers a valuable tool for tracking this flood of data.

2.2 Write-optimized data structures (WODS)

WODSs [2] balance primary memory and secondary stor-

age and support significantly higher ingestion rates, in

practice an improvement of as much as two orders of

magnitude compared to traditional indexing data structures

such as B-trees. Examples of write-optimized data struc-

tures include Be-trees [5], LSM trees [15], xDicts [6] and

COLAs [1].

Recent work on write-optimized data structures [16]

challenges the notion that only in-RAM data structures can

keep up with high-volume data streams. Pandey et al.

design WODS that can process millions of stream events

per second, while also allowing efficient query

performance.

Log-structured merge trees a LSM tree [15] is a write-

optimized data structure that is the basis of many key-value

stores. In contrast to traditional indexing data structures

(such as B-trees) that implement in-place updates, an LSM

tree performs out-of-place updates. It buffers updates in

main memory until there are enough changes in one block

of external memory to amortize the cost of the data

transfer. This leads to high-throughput for updates, and

improved cache performance. Popular key-value stores that

are based on an LSM-tree design include LevelDB [9],

BigTable at Google [7], RocksDB [11] at Facebook, and

Cassandra at Apache [12]. Our system, Diventi, uses the

popular RocksDB [11, 13] implementation of an LSM tree.

We describe how an LSM tree organizes data, performs

updates (inserts and deletes) and lookups, along with its

asymptotic guarantees. An LSM-tree maintains L levels,

where level 0 resides in primary memory and the remaining

levels are stored on disk.1 The size of levels grows expo-

nentially with growth factor T (typically T is between 10

and 20). In particular, the size of level i is T times the size

of level i� 1. The number of levels is thus

L ¼ OðlogTðN=MÞÞ, where N is the total number of entries

in the data structure and M is the size of Level 0 (primary,

or main, memory).

A key is inserted directly in the buffer at level 0, which

is implemented as a data structure called a Memtable. A

delete is treated as an insertion of a special tombstone

message. Instances of a deleted key may exist on lower

levels but are not returned on queries.

When a level i fills up, runs of similar sizes on that level

are merged and all runs are flushed to level iþ 1. A merge

operation is also referred to as a compaction. When two

instances of the same key merge, the newest one is kept,

and the LSM tree upserts the previous instances, removing

them from the tree. Figure 1 shows a basic LSM tree

flushing two levels.

There are two main merge policies: leveling, and tiering.

Leveling maintains a single sorted run at each level. Thus,

whenever a run from level i is flushed to iþ 1, it is

immediately merged with the run at that level. Tiering lets

up to O(T) (sorted) runs accumulate at each level, after

which the runs are merged. Thus, leveling achieves faster

lookups at the cost of slower ingestion.

On lookups, each level is searched in order until the key

is found. To speed up lookups, an LSM tree may store a

Bloom filter in main memory for each run. When queried,

if the Bloom filter says the key is not present in the run,

then the lookup operation can skip the corresponding run,

improving performance.

In a tiered LSM-tree, the amortized lookup cost is

Oð1þ L � T � �Þ I/Os, where � is the false-positive rate of

the Bloom filter. This is because there are L levels, O(T)

1 Traditionally, each level in an LSM tree is implemented as a B-tree.
However, modern systems maintain sorted runs instead and store

metadata information in main-memory for each level (fence pointers

that store information for every disk page of every run).
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runs per level, on average � runs are falsely probed, and 1

run is correctly probed (assuming the key is in the LSM).

The amortized update cost per element is O(L/B) I/Os,

where B is the block size, that is, the amount of data

transferred in one I/O between main memory and external

memory. Each entry is involved in at most L merge oper-

ations. When a block of B elements is involved in an I/O,

each element incurs an amortized O(1/B) I/Os.

In a leveled LSM-tree, the amortized lookup cost is

OðL � �Þ, since there are is a single run per level, and on

average � runs are probed. The amortized update cost per

element is OðT � L=BÞ. Each element, once it arrives on

level iþ 1, is involved in O(T) merges, on average, from

flushes from level i, each with an amortized O(1/B) I/O

cost. Each entry is involved in at most L levels.

The RocksDB implementation of the LSM tree uses a

hybrid merge scheme, following a tiered approach for

flushing from level 0 to disk, and a leveled approach for all

other levels. Figure 2 comes from the RocksDB wiki [11]

and shows a more detailed diagram of the actual

implementation.

2.3 Related work

Low latency delete persistence in an LSM tree, deleted

elements are replaced by a ‘‘tombstone’’ to be persisted as

it naturally reaches the bottommost level through com-

paction and flushing. This causes unwanted space ampli-

fication and read amplification as these ‘‘deleted’’ elements

remain on disk and may be read during queries. Sarkar

et al. introduce Lethe [18], a tunable delete-aware LSM

Engine, designed to persist deletes with low latency and

support efficient range deletes on a secondary delete key.

Lethe focuses primarily on minimizing the lifetime of these

tombstones once they are created by delete operations. By

contrast, Diventi’s focus is on monitoring a stream of data

with no explicit deletions. Events are deleted based on a

global cutoff time in an I/O-efficient manner.

Elasticsearch. Elasticsearch (https://www.elastic.co) is

commonly used as a storage and retrieval mechanism for

generic log data, including network logs. The underlying

data structures and indices, part of the Lucene library,

provide generalized query support, suitable for demand

queries that an analyst may want to adjust through the

normal course of analysis. While this generalization is a

critical asset in the analyst’s toolbox, it limits Elastic-

search’s ability to optimize for important cases like IP

addresses. The result is such systems often requiring large

clusters of servers to ingest large volumes of heterogeneous

logs and handle queries.

Under the hood, Lucene creates indices at ingestion

time, using datatype-specific data structures for the index.

For numeric fields it uses Bkd trees; for text fields it uses an

inverted index. In practice, indices are organized in what is

called a ‘‘rolling’’ index setup, where an index name

includes the date when the index was created. After a

certain number of insertions into this index, a new index is

created and inserted into. As space limits (or a certain

number of indices) are reached, the indices with the oldest

date in the name are deleted to make room for new data.

This allows Elasticsearch to efficiently expire data using

multiple indices.

Given that Elasticsearch is open source, freely available,

and well supported by a robust community, it is commonly

deployed as a security monitoring tool. Analysts frequently

write analytics that use Elasticsearch. While the indexing

methods are quite different from those used in Diventi, we

believe this common use for behavioral analytics makes

Elasticsearch a reasonable point of comparison to Diventi.

For this reason, our empirical tests in Sect. 6 focus on

comparing the performance of Diventi and Elasticsearch.

Splunk. Splunk’s (https://www.splunk.com) use case is

similar to that of Elasticsearch, providing a storage and

retrieval mechanism for generic log data. The underlying

database is proprietary, creating indexes during time of

Fig. 1 Before and after a simple leveled LSM tree stores integer keys. Inserting key 13 causes the buffer to fill, triggering a flush and merge to

level 1, and in turn to level 2. Parameters in this example: growth factor T ¼ 2 and the size of in-memory buffer M ¼ 2
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ingestion to support fast queries, storing the data in

buckets.

Similar to Elasticsearch’s ‘‘rolling’’ index setup, buckets

start in the hot state, then progress through warm, cold, and

frozen states as they age. Buckets in the cold state transi-

tion to the frozen state when time or size-based conditions

are met. Frozen buckets are slated to be deleted.

3 Design

Here we present the design of our system, Diventi, to

rapidly ingest and index network communication events.

We first cover the way we parse connection logs and index

them in our key-value store. We then discuss how we

implement expiration across this key-value store to ensure

that security responders are guaranteed the N most recent

events, and to avoid large bursts of I/O when deleting old

events.

3.1 Database design

Our primary goals in designing Diventi were to index our

data by IP (allowing sub-second query times), while sup-

porting high ingestion rates.

Since the majority of our data is write-once read-maybe,

most of our computation is inserting events into our index.

Our primary challenge was maintaining sufficiently high

insertion rates ([ 100; 000/s) as our index grows to very

large data sizes ([ 50 billion events). To achieve this high

insertion performance, we leveraged the strengths of

WODSs, which excel at write-heavy workloads even when

they grow beyond the size of RAM. We built Diventi

around the popular key-value store RocksDB. Unlike tra-

ditional databases, RocksDB is a key-value store, so it only

indexes data on a single key. Therefore we must consider

how to best represent our network connection events in a

key-value format. Diventi is designed specifically for net-

work connection logs in a variety of sensor formats (Zeek

connection logs, netflow, or IPFix [8]). These logs typically

record events that involve one IP speaking with a different

IP. Fields from a typical connection log are shown in

Table 1. The core concept of IPs, ports, protocols and

quantities of data in each direction are common across the

log formats seen for security monitoring.

To turn these disparate events into key-value pairs for

indexing, we must decide on a consistent key format across

all log types. To allow efficient querying by IP address, we

begin each key with an IP address and the timestamp. This

allows us to efficiently look up all connections involving a

given IP (e.g., 1.2.3.4), all connections involving an IP

range/subnet (e.g., 1.2.3.X), or even to filter connections

from a given IP down to a specific time range (e.g., con-

nections with 8.8.8.8 during a given week).

One issue, however, is that simply indexing by origi-

nating IP wouldn’t quite be enough, since each network

event represents a connection between two IPs (originating

IP and responding IP). To deal with this issue, we insert

Fig. 2 Architecture of an LSM tree as implemented by RocksDB (taken from RocksDB wiki [11])
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two key-value pairs for each network event, one keyed by

‘‘originating IP, timestamp’’ and the other by ‘‘responding

IP, timestamp’’. This allows queries to lookup connections

by either of their two IPs. To differentiate between the two

copies of each key, we set an extra ‘‘reverse bit’’ at the end

of the key if responding IP is the primary key.

A second issue is key collisions: when two identical

keys are inserted, the data for one of them would be

overwritten. In write-optimized data structures, insertion

costs are so low that it is significantly faster to insert a key

than it is to query for its existence in the tree. Therefore, to

avoid data loss, instead of checking for a given key’s

existence we add other identifying information about the

connection into our key, as shown in Table 2. Since there

can only be one connection between the same two ports on

the same two hosts at any given time, our keys now

uniquely identify a connection and prevent issues of

collisions.

With our key-format established, the remaining useful

information from the connection event is formatted into a

value, to create a key-value pair. The key contains IP, port,

and timestamp info. The other relevant information from

each network event includes connection protocols, trans-

mission control protocol (TCP) flags, connection duration,

and numbers of packets/bytes transferred in either

direction, all of which get stored as the value of our key-

value pairs.

To improve performance, we also ‘‘compress’’ some of

the event data before storing it. Typically the original

connection logs will still be available, so Diventi doesn’t

need to record all the data exhaustively. We only keep

information that would be useful for a security analyst to

assess if a given connection is noteworthy. Typically,

analysts care more about the scale of a connection (e.g.,

was it 2 bytes or 2 GB?) than about precise values. To take

advantage of this, we only store an 8-bit exponent for each

quantity instead of its full 32- or 64-bits (i.e., we only

record scale ¼ log2ðorig bytesÞ), so queried connection

data is expressed in ranges such as ‘‘16–31 packets’’ or

‘‘1–2 GB transferred’’. By shrinking the data in this way,

we make our key-value pairs more compact and therefore

faster to index, while still giving analysts all the informa-

tion they need.

The exact format of the values in our key value pairs

varies based on which logs they came from (i.e., Zeek,

netflow) since they all record slightly different data. The

content of the key contains fields that are universal across a

wide range of IP connection logs, so these are always

consistent. However, some extra information does vary by

log format, so we insert slightly different binary formats as

values, along with an indicator of which format it’s from.

Diventi can decode the different values back to the

underlying data at query time. This flexibility to ingest and

index multiple log formats at the same time also makes

Diventi a powerful tool to analyze data from many different

network sensors.

While our focus has been primarily on IP data, we have

clearly abstracted events (the underlying data), keys (what

we want to index by), and values (event data that might be

useful to an analyst). This separation has made it easy to

adapt Diventi to several different formats of network con-

nection data. We believe this design will also make it easy

Table 1 Some example fields

from a Zeek connection log
Field Type Example Description

ts time 980997832.690939 Time of observation

uid string Ch80yl33lQkOymHcab A unique hash to identify this connection

orig_h IPAddress 209.11.146.100 Address of the originating host

orig_p port 32113 Port number on the originating host

resp_h IPAddress 11.254.205.104 Address of the responding host

resp_p port 443 Port number on the responding host

proto enum tcp The IP protocol field

flags string RSTOS0 Some flags to show the state

orig_bytes count 84

resp_bytes count 20

orig_packets count 1

resp_packets count 1

Table 2 Data fields for key

Byte range Length Field

0–3 4 IP A

4–11 8 Timestamp

12–15 4 IP B

16–17 2 Port A

18–19 2 Port B

20–20 1 Reverse-bit/misc flags
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to adapt Diventi to index other kinds of critical events, such

as urls, e-mail addresses, or other security events.

3.2 Expiration of old data

Since Diventi is continuously indexing data, we want it to

automatically manage its space usage, deleting old data to

keep from filling the disk. Many indexing tools (Elastic-

search, for example) use multiple indices to deal with large

volumes of data. Once the current index grows too large,

the database ‘‘rolls over’’ to a new index and insertions are

made in the new index. This setup ensures that the oldest

data is always in the oldest index. Whenever the database

grows too big, dropping the oldest index expires the oldest

data.

Diventi uses a single large index to speed queries. Since

our LSM tree index (RocksDB) isn’t sorted by timestamp,

old events are interspersed throughout the tree, mixed with

recent events. To expire old data, we need to go through

our entire LSM tree and delete individual events. If not

implemented carefully, this operation could easily become

a performance bottleneck.

To implement our expiration system efficiently, we

leverage two built-in features of RocksDB: ‘‘compaction

filters’’ and ‘‘periodic compaction.’’

RocksDB implements a time-to-live (TTL) feature,

automatically deleting entries older than a certain age. To

do this deletion efficiently, RocksDB implements a

‘‘compaction filter.’’ As new data is continually inserted,

RocksDB keeps pushing those entries into deeper levels of

its LSM. A compaction is moving a set of entries down into

the tree, merging them into the sorted data of the deeper

level. Because data is already being read from disk,

accessed, and rewritten during a compaction, there is

minimal overhead to also check that data against a small

function contained in the compaction filter. In this case, the

function checks if the age of the data entry exceeds the

TTL, and if so, drops the entry. By piggybacking on

existing compaction operations in this way, compaction

filters can delete old data efficiently and incur no additional

I/O cost.

Enabling compaction filters alone would not guarantee

that all old entries are removed: compaction filters can only

delete data when that data undergoes a compaction, and

compactions are intermittent. Additionally, compactions

will only be performed in regions of the key-space where

new data is actively being inserted. While in many work-

loads we expect these ‘‘opportunistic’’ compactions to do

most of the deletion work, there are pathological workloads

which leave portions of the tree un-compacted for extended

periods of time, potentially allowing old entries to accu-

mulate. To guarantee timely cleanup of entries, we must

periodically sweep through our data store, ensuring that all

entries are compacted regularly, even if they reside in a

portion of the tree which is not being accessed currently.

To accomplish this, we enable a second feature of

RocksDB called ‘‘Periodic Compaction’’: which guarantees

that every entry in the tree will be re-compacted at least

once per a user-specified time interval. Periodic com-

paction can cause a significant amount of additional I/O,

and in the worst case, it could require RocksDB to re-touch

the entire tree. In practice, and with an appropriately-

configured compaction interval, periodic compaction

should have a minor impact on performance, only cleaning

out the dusty corners of the LSM tree.

By using these features of RocksDB, we can delete old

data opportunistically, incurring minimal I/O performance

penalties despite having to delete in-place in a single index.

3.2.1 Making expiration count

We want Diventi to maintain its database at a configured

size by deleting old entries. Using RocksDB’s compaction

filters as they are configured gets us partway there, but the

default compaction filter only deletes old data when it

reaches a specified maximum age. We wish to instead

delete old data once our database reaches a desired size,

i.e., once we have a total count of [N entries in the tree.

Using a time-based system (i.e., time-to-live or TTL), is

a common solution for discarding old data. Both RocksDB

and Elasticsearch use TTL as their primary means of

configuring expiration. However, using time alone has

some downsides for our use case: if insertion rates are

particularly low for some time, it would take less space to

record the same time-span’s worth of data, but a TTL-

based system wouldn’t take advantage of that and would

leave the free space unused. If insertion rates were par-

ticularly high for a while, we’d want to start deleting data

sooner since there would be more data for the same span of

time, but a TTL system would not adapt. What we want is a

system that expires old data while maintaining our tree at a

consistent size.

We therefore designed our expiration system to the

following constraints:

– Expiration will never delete any of the N most recent

events we’ve indexed (for some user specified N).

– With expiration enabled, our key-value store

(RocksDB) will never index more than N þ k events,2

(where k is some parameter \N).

As we mentioned before, RocksDB provides a compaction

filter which automatically deletes entries once they pass a

2 In the analysis section, we show in detail how the value of k derives
from the values of several other parameters, but in practice k should

be \N=3.
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specified age. RocksDB also allows us to override that

compaction filter to change its deletion criterion. To make

our count-based expiration system, we implemented a

custom compaction filter that deletes entries in the tree

once they are older than a global ‘‘cutoff time’’. We then

set/adjust this cutoff time as needed to maintain our data-

base at the desired size of N entries.

The tricky part of the problem then becomes determin-

ing what the cutoff time should be. We want a cutoff time

such that the number of events in our LSM tree younger

than the cutoff is as close as possible to N without going

under. Determining this cutoff time is a nontrivial problem.

Since our tree is not sorted by timestamp, we must con-

struct an auxiliary data structure to help us determine an

appropriate cutoff time.

3.2.2 Timestamp histogram

To specify which entries are to be expired, we need to find

the timestamp of the Nth-most-recent entry, which we call

the ‘‘N-cutoff’’ time (i.e., there are exactly N entries in the

tree whose timestamp is greater than the N-cutoff).

A naive solution to determine the N-cutoff time might

be to build a second tree of all entries, sorted by their

timestamps, which we could then query for the Nth-most-

recent. This would work, but would take up far more space

and time than is needed to solve this problem.

In practice, we don’t need an exact value for the N-

cutoff. Since our expiration system is allowed some extra

wiggle room (up to k), we can instead use a structure that

provides an approximate-N-cutoff, i.e. the number of

entries younger than the cutoff timestamp falls in the range

½N;N þ ehist�. By allowing an approximate solution, we

have a small, fast solution to the problem.

Our goal is therefore to design an auxiliary data struc-

ture with the following specification:

– Records a timestamp from each entry before it is

inserted into our main key-value store.

– Can be queried for an approximate-N-cutoff, which is a

timestamp such that the total number of inserted entries

with timestamps newer than the cutoff is [N and

\N þ ehist.

– Is sufficiently accurate: (in practice: ehist less than one

percent of N is more than sufficient).

– Small (fits easily into a small fraction of available

RAM).

– Performant for insertion: (negligible performance cost

for insertions compared to the cost of inserting into the

main key-value store).

We call this data structure the ‘‘timestamp histogram,’’

since it records approximately the distribution of times-

tamps currently in our tree. In practice, a simple naive

implementation is more than small, fast, and accurate

enough.

Here is the timestamp histogram structure that we use in

Diventi (although better designs are certainly possible). We

divide time into intervals (e.g., 1 h intervals), and for each

time interval we initialize one 64-bit counter. As each

timestamp is inserted, we take the time interval that their

timestamp falls into, and increment the corresponding

counter. In effect this gives us a histogram of how many

timestamps fall into each interval (e.g., each hour), over the

span of time that our data covers.

To calculate the N-cutoff, we scan the counters from

newest to oldest, accumulating the total number of entries

we’ve seen so far. Once our total is �N, we can stop. We

now know exactly which time interval contains the Nth

most recent entry. While we don’t know the exact times-

tamp of the Nth-most-recent, we can round up (i.e., older),

and take the start of that time interval as our cutoff time.

We are guaranteed to keep at least N entries alive (since we

counted them). Our error, i.e., how many extra entries we

keep, is at worst the maximum number of entries that fall

into a single time interval. In practice, we can configure the

time intervals to be small enough that this error is

negligible.

We implement our timestamp histogram as an arraylist

of 64-bit atomic counters, each representing a time interval.

All time intervals are contiguous and the same size, so we

can index into this arraylist for any given timestamp with

only a bit of arithmetic. If we use atomic counters, then

recording each timestamp can be easily multithreaded.

When inserting a timestamp that is newer than the most

recent time interval, we obtain a write-lock on the whole

data structure (blocking out any other inserters), and

expand the arraylist. While this is a relatively-slow oper-

ation, in practice our timestamp history is sized such that

we only need to add another counter (and therefore lock the

whole thing) at most once per 10s or 100s of thousands of

insertions. Because each time interval only stores a single

64-bit counter, it also uses little RAM.

We briefly tested our timestamp histogram implemen-

tation on the same nodes as our main benchmarks. We

tested from 2 to 64 threads, and varied interval sizes from

fine to coarse. RAM usage was typically under 20 MB, and

even with 1-min resolution covering 2 full years of data,

(several orders of magnitude finer than needed), RAM

usage only reached 60 MB. All but one test comfortably

handled over 2 million events/s. Performance only dipped

down to 1.5 million/s when we made intervals so fine that

only 300 events landed in each, which is once again several

orders of magnitude finer than needed. In our results sec-

tion, we show that Diventi achieves sustained ingestion

rates in the range of 100 to 200 thousand events/s. Because

timestamp histogram can handle more than 10 times that
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rate (2 million/s), we are confident that the timestamp

histogram is not a bottleneck on Diventi as a whole.

3.2.3 Putting expiration together

We can now put together the complete expiration system.

For each entry inserted into the key-value store, we also

insert its timestamp into the timestamp histogram. Peri-

odically, we query the timestamp-histogram for an

approximate N-cutoff to update our global cutoff time. Our

compaction filter checks against this value, ensuring all

entries older than the cutoff time are deleted the next time

they undergo a compaction. While the cutoff is not exact, it

is guaranteed to always leave the N most recent entries.

There is also an upper bound (ehist) on how many extra

entries it may leave un-deleted. Finally, we enable

RocksDB’s periodic compaction feature, which ensures

that every entry is compacted at least once per a specified

interval, so all old entries are removed in a timely fashion.

In the analysis section, we examine the interactions of

these systems, and derive an upper-bound guarantee on the

number of extra entries stored. That is, we show old entries

are removed fast enough that the system never holds more

than N þ k total entries.

4 Analysis

In this section, we prove several bounds for our expiration

design. For this section, we assume the tree contains more

than N entries, since expiration isn’t active until we exceed

N.

The expiration system allows the tree to grow beyond

the target size N. We prove an N þ k upper bound on the

size of the tree with expiration enabled, where k is a

parameter derived from several parameters of our design.

In practice, k is roughly the maximum number of insertions

we expect to see between two periodic compaction events

in RocksDB, and we can typically adjust the frequency of

periodic compaction to keep k to a small fraction of N.

We also analyze the performance costs associated with

our expiration system. As our expiration system features

several moving parts and additions to RocksDB, we ana-

lyze the asymptotic performance of enabling expiration and

show that using our expiration system should not signifi-

cantly harm insertion rates over the normal LSM-tree

asymptotic costs.

4.1 Analysis of excess disk usage

If expiration were instantaneous, our key-value store would

never hold more than N events. However, to implement

expiration efficiently, we allow our tree to grow past N. In

this section, we show that the system as described in

Sect. 3 never holds more than N þ k entries, where k is the

sum of three specific tunable parameters of our expiration

system.

In order to determine which entries are eligible for

deletion, we store a global cutoff-time: all entries older

than this cutoff can be safely deleted. If an entry has a

timestamp older than the cutoff time, we call it ‘‘marked’’

for deletion. Entries are not physically marked, rather the

global cut-off time implicitly ‘‘marks’’ them.

Marked entries are not immediately deleted. They are

deleted during compaction. Entries undergo compaction

automatically as part of normal insertion operations, and

RocksDB guarantees that every entry is compacted at least

once per a configurable time-period.

We can implicitly label each entry in our key-value store

as follows: Entries younger than the Nth most recent are

‘‘live’’ and do not need to be deleted. Entries older than our

cutoff timestamp are ‘‘marked’’ for deletion, and will be

removed the next time they undergo a compaction event.

Entries falling between the Nth most recent and the cutoff

time are ‘‘unmarked.’’ We are allowed to delete them, but

the system is not yet aware of this, and so does not delete

them during compactions.

By definition, there are always exactly N ‘‘live’’ entries

and at most k marked or unmarked entries.

Theorem 1 With expiration enabled, the Diventi system

has no more than N þ ehist þ Iupdate þ Icompact entries,

where ehist is the error (by construction) in setting the

cutoff time, Iupdate is the number of entries that arrive

between updates to the cutoff time, and Icompact is the

maximum number of entries that arrive between and con-

secutive RocksDB compactions.

Proof We first analyze how unmarked entries accumulate

in our tree. Periodically, we query our timestamp histogram

for a cutoff time, which becomes the new global cutoff.

Ideally, this cutoff time would mark all unneeded entries

for deletion, leaving only the N live entries. However, since

our timestamp histogram only returns an approximate

cutoff, it may leave up to ehist unmarked entries. Even more

unmarked events can accumulate in the time between two

successive cutoff updates, as there will be up to Iupdate
insertions occurring before the next opportunity to update

our cutoff time.

At the moment that we update our cutoff time, the

maximum number of unmarked entries in the tree is (by

definition) ehist. In the time between two successive cutoff

updates, there will be, by definition, at most Iupdate
insertions, each creating at most one additional unmarked

entry. Therefore, the maximum number of unmarked

entries that can ever exist in our tree is ehist þ Iupdate.
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We now consider marked entries. Entries are marked if

they are older than the current cutoff time, and marked

entries are deleted whenever they undergo compaction. By

enabling periodic compaction in RocksDB, we guarantee

that each entry will be compacted at least once per a

specified interval. If every entry in our tree sees a

compaction once for every Icompact insertions into the data

structure, then no marked entry can survive for longer than

Icompact insertions before it is deleted.

Before we can put this all together, we need a third

piece: consider the set of all ‘‘excess’’ entries in the tree,

defined as the marked and unmarked entries. Changing the

cutoff time may convert some entries from unmarked to

marked, but will not change the set of excess entries. In

addition, deletions will never add elements to the set of

excess entries. The only way to create new excess entries is

to insert entries into Diventi, If an inserted element is older

than the cutoff, it is immediately in the marked or

unmarked sets. Otherwise, a new entry causes the former

Nth-most-recent to age out and become unmarked. There-

fore, the set of excess entries can gain at most one new

member for each insertion.

Now we combine these three observations to find an

upper bound on k. Assume our tree contains more than N

entries. Consider the state of that tree at a point Icompact

insertions in the past, p. Each of the excess entries currently

in the tree must fall into one of two categories: they were

already excess entries at point p and have survived without

being deleted, or they are new excess entries that have been

created as a result of insertions since point p. Since we’ve

shown that marked entries can’t survive longer than Icompact

insertions, we know that any marked entry at p has since

been deleted and only unmarked entries may still be excess

entries. Since we’ve shown that we can never have more

than ehist þ Iupdate unmarked entries in the tree at a time, at

most ehist þ Iupdate excess entries remain that were excess at

point p. In addition, Icompact new entries have been inserted

since point p, creating up to Icompact new excess entries.

Since each excess entry currently in the tree must either

have been excess at point p or been newly created, the

maximum number of excess entries is

ehist þ Iupdate þ Icompact. This allows us to bound k, the

number of excess entries:

k� ehist þ Iupdate þ Icompact: h

4.2 The excess-storage bound in practice

In the previous section, we proved bounds on k, the number

of stored entries beyond our target N, in terms of counts of

insertions. For example, we define Icompact to be the

maximum number of insertions between any consecutive

compactions. However, in practice, we don’t schedule

these operations based on number of insertions but instead

based on a fixed time interval. Scheduling in terms of time

is more natural. We use several features of RocksDB,

which are configured in terms of time.

We can still use the upper bound we just proved, but

must now account for time and calculate k using the rates

of events we expect to see.

If we know the time interval at which periodic com-

pactions occur and the maximum rate at which new events

will be inserted, then Icompact is the compaction interval

times the maximum event rate.

Similarly, Iupdate is defined as the maximum number of

insertions that can occur between two subsequent updates

to the cutoff time. If we know the cutoff update time

interval, then Iupdate is the update interval times the maxi-

mum event rate.

Our definition for ehist is a little trickier: when querying

the timestamp histogram, we receive a cutoff time. This

cutoff time will always leave N events live, but it may also

leave some excess events beyond N unmarked. We define

ehist to be the maximum number of excess events left

unmarked by the timestamp histogram. The timestamp

histogram divides time into evenly spaced intervals, and

records how many events occurred in each interval. When

querying for a cutoff time, we don’t have data any more

granular than these time-intervals, so we’re forced to round

up to the next largest time interval to ensure we keep the N

most recent entries. This rounding adds excess entries

younger than the cutoff time, and can include as many

excess entries as there are events falling into a single time

interval. ehist is thus the maximum number of events that

can occur within one time interval of the timestamp his-

togram. If we know the granularity to which the timestamp

histogram is configured, as well as the maximum rate at

which events can be generated, then ehist is the timestamp

histogram’s granularity times the maximum event rate.

In summary, k is the sum of the maximum event cre-

ation/ingestion rate times each of the periodic compaction

interval, cutoff-update interval, and timestamp histogram’s

granularity. In practice, we can set the timestamp his-

togram’s granularity and the cutoff update interval to be

quite low, such as 10 min or even 1 min. Only the periodic

compaction interval contributes significantly to k, since

setting this to occur more often than a few times per day

decreases our insertion performance.

To put all this into practice, let’s derive a disk usage

bound for the Diventi test we describe in Sect. 5. We

configured Diventi to expire down to N ¼ 25 billion

events. Periodic compaction was set to occur at 12-h
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intervals, and granularity of the timestamp histogram and

the cutoff update interval were both set to 10 min.

Looking at the results for this test in Sect. 6, insertion

rates hovered around 175,000 events/s. At this rate, 10 min

of insertions corresponds to 105 million events, so Iupdate ¼
105 million. Similarly ehist � 105 million.3 At this same

rate, 12 h of insertions corresponds to 7.6 billion events, so

Icompact ¼ 7:6 billion. Adding up these three quantities, we

get k ¼ 7:8 billion events, so we have a guarantee that our

data should never grow larger than N þ k ¼ 32:8 billion

events. In percentage terms, this means that our Diventi

instance with expiration set to N ¼ 25 billion, should not

go over 31% excess disk usage beyond what is strictly

needed to store the first 25 billion events.

4.3 Asymptotic performance costs of expiration

We have shown that our expiration system should guar-

antee prompt reclamation of disk space. However, we still

need to show that our added machinery does not hamper

the performance (i.e. ingestion rates) of Diventi. When

considering the runtime performance of Diventi, the big-

gest contributor to its performance is RocksDB, the

underlying key-value store. RocksDB is an LSM tree. As

described in Sect. 2, LSM trees have the following

asymptotic performance characteristics:

Insert: OðT=B � logT n=MÞ;
Point Query: OðlogT n=MÞ;

where B is the block size of each I/O, M is the size of the

in-memory root node of the tree, T is the size-ratio between

levels of the LSM tree, and n is the total problem size.

Since Diventi delegates most of the data-structure work

to RocksDB, we need only ensure that nothing Diventi does

will affect the asymptotic performance of RocksDB. When

inserting entries, Diventi merely parses them from the input

logs and passes them off to RocksDB for insertion, so

Diventi adds O(1) time per insertion and doesn’t affect the

asymptotic insertion performance. Similarly, when exe-

cuting a query, we rely on RocksDB to do all the heavy

lifting and merely reformat the data we receive, again a

constant-time operation.

For the expiration system, we consider the costs of

adding a compaction filter, of enabling periodic

compactions, and of inserting into and querying the

timestamp histogram.

– Compaction filter our compaction filter runs for each

entry in the tree, each time it is compacted (i.e. moves

down a level). However, this compaction filter only

runs when entries are already in cache, and the check

itself is constant-time (checking a timestamp against a

global), so it does not increase the asymptotic cost of

compaction.

– Periodic compaction in the worst case, this forces us to

re-write the entire tree periodically, costing N/B I/Os

each time. Therefore, for every N insertions, our

periodic compaction must only occur OðlogT n=MÞ
times. This makes the total compaction cost comparable

to the insert cost for the N insertions:

OðN=B � logT n=MÞ. This is the only cost that con-

strains us in any significant way in practice.

– Timestamp histogram the timestamp histogram for

expiration is a black box, permitting a variety of

implementations. For an asymptotically efficient imple-

mentation of the timestamp histogram, we use a second

LSM-tree, indexed by event timestamps. Keeping a

second LSM-tree doubles the insertion cost, which

leaves the asymptotic cost unchanged. We can query

this LSM-tree for a cutoff time using binary search

across the OðlogT n=MÞ sorted runs of data, taking

Oðlog2ðnÞÞ per query. We would only need to run this

query a constant number of times per N insertions, so

querying an LSM-based timestamp history would not

pose a significant performance cost.

In practice, an LSM-tree-based implementation is far

larger and slower than we need. In our experiments, we

used a small, simple array list of counters. At the data

sizes we used, our implementation fit in under 20 MB

of RAM, and ran fast enough on both inserts and

queries that it had no noticeable impact on Diventi ’s

performance.

With appropriate choices for Diventi parameters, the final

asymptotic performance cost per insertion remains equal to

that of the underlying LSM tree.

5 Methodology

While we have put Diventi through its paces in real-world

deployments, we wanted to run controlled benchmarks to

gauge its performance in a consistent environment and to

compare it head-to-head with an existing indexing tool,

Elasticsearch. We used a set of anonymized real-world

network traces collected during the 2019 SuperComputing

Conference. These traces provide 2.4 billion connections,

3 ehist This is slightly oversimplifying: actually Icompact and Iupdate both
depend on ingestion rate, whereas ehist actually depends on the rate of

event creations, as determined by their timestamps. In a practical

system, these two rates will be the same, as events should be ingested

at the same rate as they are created. However, in the case of our test

setup, we are ingesting a pre-generated backlog of data as fast as

possible, so the ingestion rate is significantly higher than the event-

creation rate.
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but by replaying them in a loop we created a synthetic

workload representing 100 billion connections.

We ran our tests with this synthetic workload on a

cluster of identical Linux machines. We recorded insertion

rates and disk usage over the course of these tests. We also

ran several sets of queries against these test instances to

gauge query performance.

5.1 Real world traces

During SC 2019 as part of the NRE experimentation track,

we collected and anonymized traces of network commu-

nications, specifically connection logs, along with attri-

butes of the original IP including its country code, whether

access was over WiFi, and if it was blocked and why.

These logs consisted of more than 2.4 billion connections

covering approximately 4.2 million unique IP addresses.

To preserve anonymity, each IP address is remapped to a

different IP. This remapping is consistent throughout the

dataset and randomly generated, with the restriction that

internal IPs were all kept under 255.255.* and 255.254.*

and external IPs were mapped to everything else. These

events span traffic from 10/30/2019 through noon MT on

11/21/2019. This dataset has been made publicly available

as a part of this paper’s publication.

5.2 Extending traces for a large-scale test

When working with large-scale data structures, perfor-

mance often strongly depends on how large the data grows.

To collect consistent measurements we need a repeat-

able workload that represents months or more of data.

While our traces from SC 2019 were relatively large, they

represented four weeks of activity, with two weeks low

usage, one week moderate usage and one week heavy

usage. By looping these traces approximately 40 times, to

100 billion events, with timestamps adjusted appropriately,

we created a synthetic workload of roughly 1.8 TB of

gzipped Zeek logs. It would be fair to extrapolate that 100

billion events represents something greater than 40 weeks

of activity for a typical enterprise. We considered several

other options for synthetic traces and did generate a set of

traces with uniformly random IP addresses. In the end any

synthetic traces would have limitations (loss of temporal

locality, uniqueness/distribution of IPs, etc.). We believe

the looped SC dataset gives a good balance between real-

ism and simplicity.

Our synthetic workloads have two limitations. First,

after the first loop, no new IP addresses arrive. Thus, the

temporal patterns do not accurately represent months of

data. Even though there are no new IP addresses, each

event has a new timestamp, forming a new (key,value)

pair, which we store.

The second, potentially major, concern with simply

looping the data is that it might be cached after the first

loop, causing an unintended boost to performance, or that it

might cause the system to simply retread the same access

patterns each time it repeats. However we believe this isn’t

a major factor: a single instance of the SC 2019 trace takes

hours to ingest and is over 160 GB uncompressed, while

our test machines were limited to 128 GB of RAM, only 64

GB of which was allocated to Diventi and Elasticsearch.

Furthermore, the addresses accessed are spread throughout

the tree which, by the end of the test, will be terabytes in

size. While the access pattern is the same on each loop with

respect to IP address, the pattern of disk accesses should be

very different on each iteration as the tree grows, shifting

and spreading further apart.

Thus, we believe these limitations are relatively minor,

and we believe our looping dataset captures the most

important aspects of a real-world workload for testing

database performance: spatial and temporal locality of

incoming IP addresses, distribution from which IPs are

drawn, and burstiness of incoming events on short

timescales.

Nevertheless, to provide a broader perspective, we also

present results using a uniformly random IP workload of 50

billion connection events. While random workloads are

also not representative of real workloads, they do not suffer

from excessive data locality, and stand as a point of

comparison against our looping dataset. We generated 50

billion Zeek events with IPs drawn uniformly randomly

from the IPv4 space. Due to the less realistic nature of the

random dataset, we ran a smaller suite of tests.

5.3 Our test environment

We ran our tests with these workloads on a cluster of

identical machines, configured with 16 cores and 128 GB

of RAM, with NVME SSD storage. The physical machines

we used were Dual Socket AMD Epyc 7601 2.20 GHz

CPUs (64 total cores) and 1 TB of RAM, but to achieve a

more ‘‘modest’’ hardware setup we used Linux cgroups to

limit the RAM and core count available to Diventi and

Elasticsearch. The storage used for these tests was a large

pool of NVMe SSDs in RAID 0, organized as an XFS

filesystem. All machines were running CentOS 7 Linux.

We used the command cgset to limit memory to 128 GB

of RAM and restrict CPU use to the first 16 cores. We then

used cgexec to run our instances of Diventi and Elastic-

search under those cgroup restrictions. Note that setting the

memory limit in cgroups restricts the total memory used

across all processes running in that cgroup, as well as

across all their child processes. The memory limit also

includes ‘‘free’’ memory used by the kernel as filesystem

cache for those processes.
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We configured our Diventi tests as follows: expiration

was either disabled or set to keep 25 billion events

(N ¼ 2:5� 1010). Periodic compaction was configured to

run every 12 h. Our timestamp histogram was configured to

10-min granularity, and expiration cutoff was set to update

at 10-min intervals. Diventi was configured with 20 threads

to insert into RocksDB. RocksDB was tuned as follows: it

was allocated 64 GB of RAM for dedicated caching (half

of our total 128 GB). It was allowed an extra 16 GB of

RAM for memtables. It was configured with 12 threads for

compactions and flushes. We increased the RocksDB

pending_compaction_bytes limit to a 128 GB soft limit and

512 GB hard limit.

We performed a basic configuration of Elasticsearch as

follows: we ran a single instance (one shard) using 32 GB

of RAM, as this was the maximum amount recommended

in the documentation. We created an Elasticsearch index

with an explicit mapping corresponding to the fields of the

Zeek logs we used in our benchmarks. We disabled

indexing on all but the source IP and response IP fields. We

used Logstash to parse our Zeek log-files and insert them

into Elasticsearch. We configured Elasticsearch’s Index

Lifecycle Management to rollover indices after they

reached 50 GB in size, as recommended in the

documentation.

To configure expiration at 25 billion events in Elastic-

search, we had to approximate: Elasticsearch does not

appear to have a feature for deleting old indices once the

total number of inserted events exceeds a certain count. To

approximate this, we set indices to be deleted after they

were 8 days old, which, given Elasticsearch’s very con-

sistent insertion rates over the course of the test, kept the

database size in the range of 23–26 billion events.

5.4 The tests

For both Diventi and Elasticsearch, we ran the following

tests:

– Diventi, ingesting 100 billion events from SC Looped,

no expiration,

– Diventi, ingesting 100 billion events from SC Looped,

expiring down to 25 billion events,

– Elasticsearch, ingesting 100 billion events from SC

Looped, no expiration,

– Elasticsearch, ingesting 100 billion events from SC

Looped, expiring after 8 days (23–26 billion events),

– Diventi, ingesting 50 billion events with random IPs,

expiring down to 25 billion events,

– Elasticsearch, ingesting 50 billion events with random

IPs, expiring after 8 days (23–26 billion events).

To measure ingestion performance, we recorded counts of

total events ingested so far by both Diventi and

Elasticsearch, at 10-s intervals. We also recorded the total

disk usage of both Diventi and Elasticsearch at 10-s

intervals.

To measure query performance, we ran several sets of

test queries against Diventi and Elasticsearch. We put

together two sets of 1100 IP addresses: 1000 distinct IPs

chosen at random from our test workload, as well as 100

random IPs not in our test dataset (to test queries with an

empty result). We performed these queries using a python

script to query for those IPs, communicating with Diventi

and Elasticsearch over an HTTP socket on localhost. For

each IP, we recorded the total time taken for each query

from first HTTP request until all data was received by

python, including the time taken to parse and requery for

subsequent pages of results (in the case of large, paginated

queries).

We performed these query tests twice on each test

instance. We first ran our queries partway through the test

runtime, while events were actively being ingested, in

order to simulate query behavior in an active instance of

Diventi or Elasticsearch. We also re-ran the queries at the

end of the test, once the databases had reached their

maximum size and were idle. To prevent issues arising

from caching, each set test of IPs was only queried once.

We switched to the second set when repeating queries on

the same test instance.

For the mid-run queries the primary goal was to look at

the effect of a running vs. idle database; the precise size of

the database was less critical, so our queries were run at

slightly different instances in time: for Elasticsearch we

performed mid-run queries after around 43 billion events

inserted; for Diventi they fell closer to the 75 billion-event

mark.

On the random-workload tests, almost all IPs appeared

very few times, therefore query tests on the random

workload added several explicit range queries to ensure we

could test larger query responses.

6 Results

We present the results from our empirical tests. Our query

results show that for common queries (those with fewer

than 1000 results) Elasticsearch typically responded in 7.7

s, while Diventi averaged less than 46 ms, more than 2

orders of magnitude faster. It is responses in the range of

milliseconds that provide a foundation for behavioral

analytic systems that can not only alert but also respond to

threats.

Our Diventi servers ingested and indexed logs more than

4 times faster than Elasticsearch. Diventi ingested 100

billion events in 6.2 days, settling to a stable ingestion rate

of over 171,000 events/s. The Elasticsearch tests took over
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32 days to ingest the same 100 billion events, at a con-

sistent ingestion rate of 37,000 events/s. Our system with

automatic expiration had no noticeable overhead and

maintained a consistent ingestion rate between 171,000 and

183,000 events/s. The system without expiration continued

to slow to 116,000 events/s as a result of the increasing size

of the database. Additionally, we show empirically that,

with expiration, our disk usage remains stable while the

system continues to ingest data. We present this data as a

series of graphs of individual runs followed by tables to

compare and summarize the data.

6.1 Ingestion performance

6.1.1 Ingesting 100 billion events without expiration

Figure 3a shows Diventi ’s insertion rates over the course

of ingesting our 100-billion event workload (without

expiration). The X-axis shows total insertions. The Y-axis

shows the insertion rate, in thousands of events per second.

The blue points show average rates over 10-s intervals, the

red segments show rates averaged over 1-h intervals, and

the black lines show averages over a full sixth of the test’s

runtime. The blue points show a strongly bimodal behavior

in insertion rate, alternating between inserting rapidly

([ 400 k/s) and inserting very slowly (\100 k/s). Looking

at the longer-term averages, we can see a clearer trend over

the course of the test, starting with sustained rates of

[ 400 k/s for the first few billion events, dropping to 170

k/s at 25 billion events, and drifting down to 116 k/s by the

time we have ingested the full 100 billion events.

We believe the bimodal behavior is due to RocksDB’s

write-stalls, which are how it throttles insertion rates when

I/O-bound. When insertions arrive faster than they can be

written to disk, RocksDB triggers a write-stall until the

backlog clears. This means that ingestion happens in

bursts, but the average ingestion rate over time should

follow I/O performance, which is reflected in Fig. 3a.

Figure 4a shows Elasticsearch’s insertion rates for the

same 100 billion event workload (without expiration). The

X-axis shows total insertions. The Y-axis shows the

insertion rate. Figure 4a shows that Elasticsearch was

inserting at a steady 34 k/s over most of the test’s runtime.

The brief performance blip near the 40 billion insertion

mark coincides with when we were querying Elasticsearch,

so we believe that is due to the additional overhead of

answering queries while ingesting data.

Elasticsearch’s insertion rates did not decrease over time

as Diventi ’s did. We believe this is due to Elasticsearch

keeping many small indices, and rolling over to a new one

whenever its current index gets too big. By keeping its

indices small, Elasticsearch maintains its insertion rate as

the database grows, but as we show in Sect. 6.2, this results

in a significantly worse result for query response times.

6.1.2 Ingesting 25 billion events with expiration

Figures 3b and 4b show ingestion rates for Diventi and

Elasticsearch, respectively, with expiration enabled. Expi-

ration was configured to keep the 25 billion most recent

events indexed. The dashed line shows the 25-billion-event

point when expiration began.

Neither Fig. 3b nor Fig. 4b show any significant per-

formance degradation once expiration is enabled. This is

particularly important for Diventi, since Diventi ’s expira-

tion system can’t simply drop the oldest index, but must

actively delete old events interspersed through its tree. The

lack of performance drop confirms that Diventi ’s expira-

tion system works efficiently. Also, Fig. 3b shows Diventi

’s insertion rate no longer decreases as the test goes on.

Instead of sinking to 116 k/s, Diventi keeps inserting at

[ 170 k/s for the entire test, since the expiration system

keeps our data size constant at a little over 25 billion

events.

For Elasticsearch, Fig. 4b shows a consistent perfor-

mance of 32–37 k/s (note: in this figure, Elasticsearch also

exhibits the bimodal behavior, alternating between

approximately 70 and 0 k/s, but since we collect data every

10 s and Elasticsearch updates at a 15 s interval we believe

this is merely an anomaly in our data collection).

6.1.3 Summary and expiration

The key-takeaway from our ingestion-rate data is the fol-

lowing: by using a single write-optimized index, and

focusing on indexing the core network communication

keys critical to security monitoring (IP addresses and time),

Diventi is able to maintain insertion rates 4� faster than

Elasticsearch. While Elasticsearch continues to perform the

important task of enabling generalized queries on network

flow data, we believe a precision tool like Diventi creates a

stronger platform for building advanced behavioral ana-

lytics that must operate in near real-time for large data sets.

Moreover, we show that the overhead from expiration in

Diventi is not noticeable and far outweighs the impact of a

larger database. As Diventi expires on a single index,

performance depends on expiration overhead and database

size. Diventi has a negligible expiration overhead and

performance is stable while expiring. By restricting the size

of the database, we prevent performance loss.

6.1.4 Ingesting random IP workload

Our second workload uses uniformly random IP addresses

as described in Sect. 5.2. While random data is less
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reflective of real workloads, it approximates worst-case

behavior in terms of data locality.

Figures 5 and 6 show ingestion rates on our random-IP

dataset for Diventi and Elasticsearch, respectively. These

also had expiration enabled to 25 billion events. The graphs

show performance similar to runs on the SC Looped

dataset. Diventi stabilizes at an ingestion rate of 145 k

events/s, roughly 20% slower than its performance on SC

Looped. Elasticsearch maintains an ingestion rate of 35 k/s,

right in line with its ingestion rates on the other tests.

Comparing Fig. 5 to Fig. 3b, we observe some addi-

tional qualitative differences between Diventi running on

random data and running on looped real-world data. The

1-h averages (the red segments) show that the random

workload maintains much more consistent ingestion rates

over time. With the looped dataset (Fig. 3b) in steady-state,

the 1-h averages vary from 140 k to 230 k. With the ran-

dom dataset (Fig. 5), they stay within the range of 130 k to

170 k. We speculate that SC Looped varies more wildly

due to more locality in the dataset: when a burst of events

arrives from the same IPs or from IPs close together in the

tree, ingestion rates should speed up due to better cache

performance. However, we would expect the random

dataset to have little data locality, and so would run slowly

and steadily for the whole test.

The blue points (10-s averages) show a pattern of hor-

izontal lines. As mentioned earlier, we believe these lines

are due to patterns of insertions and write-stalls in

RocksDB. Since the random workload is uniform over

time, these bands show up clearly.

Fig. 3 Insertion rates for Diventi, ingesting 100 billion events from our SC Looped workload. a No expiration. The bimodal performance on short

timescales is due to RocksDB’s write-stall behavior when I/O-bound. b Expiring to 25 billion events

Fig. 4 Insertion rates for Elasticsearch, ingesting 65 billion events

from our SC Looped workload. a No expiration. The performance

anomaly near 40B coincides with when we were querying

Elasticsearch. Note test was cut short at 65 billion events due to

running out of disk space. b Expiring to 25 billion, ingesting 100

billion events total
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6.2 Query time

The original purpose of designing Diventi was to be able to

query network logs in milliseconds. To test query perfor-

mance, we prepared a set of 1100 IPs to query against our

databases (as described in Sect. 5.4), and recorded the time

to complete those queries at the command line.

6.2.1 Querying at 25 billion events with expiration

Figure 7 shows time taken to query our two databases for

each of a set of 1100 test IP addresses. Queries were run as

Diventi and Elasticsearch continued to ingest data, which is

how we expect would expect one to use Diventi in a real-

world deployment. Expiration was enabled, actively

keeping both databases to 25 billion events indexed.

Each point represents a single query. The X-axis shows

the size of the query result, i.e., number of events returned

by it. The Y-axis shows the time taken for the query to

complete. Both scales are logarithmic. Figure 7 shows that

for large queries ([ 10 k records), query times are pro-

portional to result size for both Diventi and Elasticsearch.

Elasticsearch takes over 11.5 min (704 s) to respond to a

query returning a million events, whereas Diventi responds

in 8 s, over 80� faster. On smaller queries, (\1 k records),

query time is not significantly impacted by the result size.

Elasticsearch completes these small queries in 3.1 s on

average, whereas Diventi completes them in 40 ms. Elas-

ticsearch answers 0-size queries (no match) in 180 ms on

average while Diventi takes 50 ms on average. We suspect

this performance improvement is due to Elasticsearch

using some sort of Bloom filter to answer negative queries

rapidly.

6.2.2 Querying at capacity without expiration

Figure 8 shows query times for Diventi and Elasticsearch

filled to capacity. In this test, expiration was disabled and

databases were idle, having filled up to 65 billion events for

Elasticsearch and 100 billion for Diventi. The X-axis shows

the size of the query, i.e., number of events it returns. The

Y-axis shows the time taken for the query to complete. At

idle, Elasticsearch’s performance on large queries is sig-

nificantly improved, taking only 6.5 min to return a million

events. However, its performance on small queries is about

3� worse, taking a full 9.1 s on average to respond to

queries under 1 k records. Additionally, Elasticsearch’s

0-result performance is back on par with that of a typical

query, taking 7 s to complete on average.

We suspect the improvement in large-result perfor-

mance comes from Elasticsearch being idle for this test,

Fig. 5 Insertion rates for Diventi running on random-IP dataset,

expiring to 25 billion

Fig. 6 Insertion rates for Elasticsearch running on random-IP dataset,

expiring to 25 billion

Fig. 7 Query times vs. number of records returned. Test run with

Diventi and Elasticsearch actively ingesting data, with expiration set

to keep 25 billion events. This test was run when Elasticsearch and

Diventi had gone through a total of 43 billion and 70 billion events,

respectively
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since large results are primarily I/O-bound, and depend

little on the current size of the tree. However, as Elastic-

search uses multiple indices, it must perform multiple

queries instead of a single query, causing a potential

slowdown. Comparing with results from several other

query tests (see Tables 3, 4), it appears that the perfor-

mance hit on small queries is primarily due to the increased

size of the database, with Elasticsearch holding 65 billion

events in Fig. 8, up from 25 billion in Fig. 7. For the

slowdown of 0-size queries, we suspect that this may be

due to Elasticsearch using something like Bloom filters to

accelerate queries, and those filters losing their effective-

ness once data grows beyond a certain size.

6.2.3 Querying random IP workload

We ran limited query tests against our random workload to

see if query performance differed significantly between

looped and random data. Figure 9 shows both query times

for Diventi and Elasticsearch after ingesting 50 billion

events and expiring at 25 billion events. Since all IPs in the

random data appeared with similar frequency, we did not

get a continuum of query response sizes in our results.

Therefore, to achieve a more diverse set of data points, we

performed queries on random IP address ranges, with

subnets ranging in size from /31 to /16 in CIDR notation.

This establishes the query performance for larger results,

but leaves Tables 4 and 3 with gaps for query-sizes that

we did not test.

In Diventi ’s case, queries with larger results ([ 100 k

records) were only 10% slower on random than on looped,

but smaller results saw a 70% slowdown on random data.

For Elasticsearch, running on random data slowed down

larger results only 15% over looped, but smaller results

were more than 3 times slower.

6.2.4 Comparison, summary, and expiration

To further examine our query results we created two tables.

The first, Table 3, shows total query response times for

queries with less than 10,000 results. For queries with more

results we find it useful to divide the total query response

time by the number of records returned. Table 4 shows this

metric as seconds taken per million results. For the

1000–10,000 results column, the startup costs still domi-

nate. For the larger-result columns, we see two key trends.

Diventi responds rather consistently independent of whe-

ther it’s ingesting or idle. For Elasticsearch, the additional

Fig. 8 Query times vs. number of records returned. Test run with

Elasticsearch and Diventi both at idle, indexing 65 billion and 100

billion events, respectively

Table 3 Average query times in milliseconds, for small queries

Test 0-Size queries (ms) 1–1 k Queries (ms) 1 k–10 k Queries (ms)

a Diventi 25B Idle 23.3 ð	7:4Þ 21.1 ð	6:6Þ 47.0 ð	19:1Þ
b Diventi 100B Idle 25.6 ð	6:4Þ 33.8 ð	11:5Þ 66.9 ð	39:3Þ
c Elastic 25B Idle 131.7 ð	36:2Þ 1040.9 ð	995:4Þ 1804.7 ð	1073:2Þ
d Elastic 65B Idle 7157.2 ð	3265:3Þ 9176.2 ð	3455:2Þ 10,260.1 ð	3402:5Þ
e Diventi 25B Running 51.2 ð	14:8Þ 40.0 ð	18:9Þ 66.7 ð	28:2Þ
f Diventi 70B Running 40.6 ð	8:3Þ 45.6 ð	14:3Þ 72.3 ð	27:2Þ
g Elastic 25B Running 183.6 ð	195:8Þ 3127.4 ð	3308:9Þ 5429.1 ð	3711:7Þ
h Elastic 43B Running 2907.2 ð	2743:4Þ 7736.4 ð	5580:8Þ 9772.0 ð	5575:1Þ
i Diventi (rand) 25B Idle N/A 28.2 ð	8:3Þ 49.0 ð	15:9Þ
j Elastic (rand) 25B Idle N/A 3949.2 ð	1290:0Þ 5549.5 ð	1369:1Þ

Standard deviation in parentheses. Results in 1 k–10 k column have high standard deviations, since query time starts becoming linear in the

number of records
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I/O of ingesting causes a significant loss in query response

time.

Overall, query response times for Diventi are as much as

100 times faster than Elasticsearch. For modestly sized

queries (\1 k records) Diventi responds to most queries in

under 80 ms (meanþ 2� standard deviation). For large

queries ([ 1 million records), Diventi responds in under

10 s. Additionally, Diventi ’s query times stay low even as

our database size grows, increasing only 30% as our data

quadrupled in size. We believe this performance benefit is

due to Diventi storing data in a single comprehensive

index, so once the point is found all results are sequential

reads. For small queries, however, query time is dominated

by the time to traverse the index. We believe our

improvement on small queries is due to Diventi only hav-

ing to search a single tree, while Elasticsearch has to tra-

verse potentially many trees. By using only a single on-disk

tree, Diventi ’s query times scale logarithmically with no

hard limit in sight.

Expiration speeds up querying in Diventi by keeping the

database small. As expiration does not introduce additional

indices but maintains a single one, expiration does not

positively or negatively effect query time outside of its

effect on disk usage.

6.3 Disk space usage

A major feature of Diventi is its ability to efficiently expire

data out of its single index. We recorded the total disk

usage of Diventi over the course of the tests to better

understand how our expiration algorithm behaved in

practice.

Figure 10 show’s Diventi ’s disk usage with and without

expiration enabled. The X-axis shows total insertions. The

Table 4 Average query times in

seconds per million records, for

large queries

Test 1 k–10 k (s/M rec.) 10 k–100 k (s/M rec.) [ 100 k (s/M rec.)

a Diventi 25B Idle 16.0 ð	5:5Þ 8.8 ð	1:1Þ 7.6 ð	0:2Þ
b Diventi 100B Idle 23.0 ð	15:3Þ 10.0 ð	1:8Þ 8.3 ð	0:4Þ
c Elastic 25B Idle 688.9 ð	509:6Þ 281.8 ð	83:3Þ 381.1 ð	69:0Þ
d Elastic 65B Idle 4032.6 ð	2851:6Þ 674.3 ð	371:6Þ 385.2 ð	73:7Þ
e Diventi 25B Running 23.8 ð	10:7Þ 10.4 ð	1:4Þ 8.3 ð	0:4Þ
f Diventi 70B Running 24.7 ð	12:2Þ 10.4 ð	1:9Þ 8.1 ð	0:7Þ
g Elastic 25B Running 1855.9 ð	1741:7Þ 687.6 ð	256:0Þ 704.0 ð	111:8Þ
h Elastic 43B Running 3639.3 ð	3414:7Þ 785.9 ð	348:3Þ 693.3 ð	131:9Þ
i Diventi (rand) 25B Idle 16.5 ð	5:6Þ 9.3 ð	1:0Þ 8.1 ð	0:2Þ
j Elastic (rand) 25B Idle 2077.4 ð	1025:5Þ 533.3 ð	151:1Þ 398.1 ð	29:1Þ

Standard deviation in parentheses. Results in the 1 k–10 k column have very high standard deviations, since

query times start being non-linear with number of records

Fig. 9 Query times vs. number of records returned. Test run on

random-IP workload, with Elasticsearch and Diventi both at idle,

indexing 50 billion and expiring at 25 billion

Fig. 10 Diventi ’s disk usage, with and without expiration enabled.

From 24 to 26 billion insertions, both graphs fluctuate in the range of

0.76–1.17 TB in size. Without expiration, disk usage rises as high as

3.73 TB by the end of the test. With expiration enabled, the disk usage

never exceeded 1.44 TB staying effectively less than 25% excess
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Y-axis shows total disk usage. The dashed line shows when

expiration is enabled at 25 billion events. Without expira-

tion enabled, disk usage increases in proportion to total

events inserted. Disk usage oscillates within a range. We

believe this oscillation is due to the LSM-tree compaction

mechanisms used by our underlying database, RocksDB, as

well as the effects of compression changing as data is

shuffled around. Between 24 and 26 billion insertions, disk

usage for both tests oscillated in the range of 0.76–1.17 TB.

Without expiration, the maximum disk usage by the end of

the test was 3.73 TB.

With expiration enabled, however, Fig. 10 shows that

disk usage levels off after expiration is enabled, increasing

only slightly past its value at the 25 billion mark, and

staying stable throughout the rest of the test. For the entire

second half of the test from 50 to 100 billion insertions,

disk usage varied between 1.0 and 1.44 TB. This is con-

sistent with our analysis in Sect. 4.2, and shows that our

expiration system is working as intended.

7 Conclusion

We present an approach to organizing cybersecurity mon-

itoring data using write-optimized data structures that

leverage non-volatile storage to support large datasets,

optimize data ingestion and query performance, and effi-

ciently expire older data to enable sustained operations

within a fixed disk space. This approach was implemented

in a tool called Diventi. We extended real-world traces to

create a 100 billion event workload in order to benchmark

Diventi and Elasticsearch in similar environments. Beyond

our benchmark, Diventi has seen live operational use in

multiple environments. Diventi supported analysts’ moni-

toring efforts and provided a foundation from which ana-

lysts were able to build more advanced rapid response

behavioral analytics.

Using our benchmark dataset, we compared Diventi with

a reasonably configured Elasticsearch instance. Diventi

typically ingested events more than 4 times faster than

Elasticsearch and delivered query responses on the order of

100 times faster. This makes Diventi well suited for fre-

quently executed security monitoring queries where query

response time should be minimized, such as for automated

response and data enrichment, while still leaving the crit-

ical role of enabling generalized queries to tools like

Elasticsearch. Our analysis and benchmarks showed that

the overhead from our expiration had no noticeable nega-

tive impact on ingestion or query performance. By intro-

ducing an efficient expiration approach that automatically

deletes old data, Diventi can run indefinitely in an opera-

tional state without halting the processing of new data or

requiring the addition of more drive space.

The concepts and approaches described were oriented

toward deploying a single instance of Diventi in an oper-

ational environment for cybersecurity monitoring of net-

work connection events. Such focused systems bridge the

gap between sensors and analytics. They provide a foun-

dational building block that enable security responders to

easily build behavioral analytics that consider months of

data in seconds and respond to threats as they occur. This

approach is valid for nearly any security monitoring

domain involving large, mostly homogeneous datasets with

readily indexable primary keys. Furthermore, while the

standalone nature of Diventi makes it easy to deploy, the

approach could also scale out, for example deploying

multiple Diventi instances in a distributed architecture

across multiple sensors.
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